Generalized Latent Factor Models for Social Network Analysis

نویسندگان

  • Wu-Jun Li
  • Dit-Yan Yeung
  • Zhihua Zhang
چکیده

Homophily and stochastic equivalence are two primary features of interest in social networks. Recently, the multiplicative latent factor model (MLFM) is proposed to model social networks with directed links. Although MLFM can capture stochastic equivalence, it cannot model well homophily in networks. However, many real-world networks exhibit homophily or both homophily and stochastic equivalence, and hence the network structure of these networks cannot be modeled well by MLFM. In this paper, we propose a novel model, called generalized latent factor model (GLFM), for social network analysis by enhancing homophily modeling in MLFM. We devise a minorization-maximization (MM) algorithm with linear-time complexity and convergence guarantee to learn the model parameters. Extensive experiments on some real-world networks show that GLFM can effectively model homophily to dramatically outperform state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

به‌کارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر هم‌خطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان

Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...

متن کامل

Modeling Relational Data via Latent Factor Blockmodel

In this paper we address the problem of modeling relational data, which appear in many applications such as social network analysis, recommender systems and bioinformatics. Previous studies either consider latent feature based models but disregarding local structure in the network, or focus exclusively on capturing local structure of objects based on latent blockmodels without coupling with lat...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals

BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...

متن کامل

Random Effects Models for Personal Networks An Application to Marital Status Homogeneity

We propose analyzing personal or ego-centered network data by means of two-level generalized linear models. The approach is illustrated with an example in which we assess whether personal networks are homogenous with respect to marital status after controlling for age homogeneity. In this example, the outcome variable is a bivariate categorical response variable (alter’s marital status and age ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011